Tuesday, 21 April 2015

Cheapest Commuting Challenge


What is the cheapest form of commuting [7]?

With my electric bicycle, I commute 54km round trip with 460Wh of energy, or 8.5Wh/km [1]. This energy usage is equivalent to 0.052 litres of fuel, or 0.1 litre/100km [2].

Well, hangon, surely it is cheaper to pedal with your own muscle, right? That's what I thought as well. So, being a skeptic, I did my own calculation:

Assume the rider is from Tour de France (NOT me), which can 'easily' produces 300 Watt all the time in the commute duration (to achieve the same comparison with my electric bike commuting). Let say the rider manage to output 460Wh exerted at the same time duration (1 hour and 40 minutes round trip). The rider would need 400 Calories [3]! Quick googling tells me, this is equivalent to a bigmac [4].

For food cost, this translates to $5 for a round trip. Heck, that is the same cost (fuel only) if I use my Toyota Corolla! There you go. Human powered commuting is NOT cheap [5]! (Of course, I'm ignoring the health benefit here).

My electric bike fuel cost? ... Nothing! That's right, because mine is solar powered (one way). The other way, I charge at work for free :)



"Wait a minute, you have not included your capital cost!" I hear someone complaining. Well, since I'm a cheapskate, my total electric bicycle cost is around AUD1,600. This price includes: new electric bike kit, second hand bike, second hand solar panel, and my own custom MPTT charger [6]. To date, I've clocked 11,000km and 420 cycles of charging (quite deep too) and definitely still have my 80% capacity (I haven't had the guts to test the actual remaining capacity). I predict I'll be good for at least another 400 cycles (before I need to buy a new battery), so the life-cycle cost would be AUD1,600 / 800 trips = 2 bucks a trip (or 7.5 cents per km). Try to beat that!

References:
[1] Exact value is highly dependent on wind. This figure is anywhere between 350 to 550Wh. The average speed for the whole ride is between 33 to 34km/h (not much affected by wind, almost none I say). Data source from installed Cycle Analyst on-board (http://www.ebikes.ca/product-info/cycle-analyst.html)
[2] A litre of fuel contains 8.9kWh of energy, using data from http://www.afdc.energy.gov/fuels/fuel_comparison_chart.pdf
[3] 460Wh = (460Watt)(3600seconds) = 1.656MJ = 396kcal (or 396 food Calorie, yes the Calorie unit IS confusing)
[4] Assuming 100% efficiency converting those bigmac calories to pedal energy.
[5] More reading if you don't trust me: http://www.fao.org/docrep/010/ah810e/AH810E08.htm
[6] http://epxhilon.blogspot.com.au/2014/06/bmppt-solar-charger-3.html
[7] For smart a$$ out there that says "cheapest commuting is no commuting at all, i.e. work at home!". To that, I can't top it off. Yes, I agree with you.


Thursday, 16 April 2015

Perbandingan On-Grid dengan Off-Grid

“Listrik saya mahal banget! Pake panel surya bisa jadi lebih murah nggak yah?”, keluh pelanggan PLN, yang memakai banyak listrik gara-gara pake AC seharian.

“Bisa lah!”, jawab saya.
“Pasangin donk!”, jawab situ.
“Sini, kasih gue 25-juta”, jawab saya lagi.
“Gila luh, mending gue nggak pasang”, jawab situ.

Masalahnya, walau panel surya bisa mengurangi biaya listrik, harga pasangnya memang sangat mahal. Pertanyaannya, “ada nggak sih, perhitungan untung-rugi pasang panel surya?”.

Nah, tulisan kali ini bertujuan menjawab pertanyaan ini. “Kapan gue untung kalo pake pasang panel surya?”

Mari, kita semua berpegangan tangan dan cipiki (cium pipi kiri) dan cipika (cium pipi kanan) sesama. Karena, PLN sudah memberlakukan ‘net-metering’ melalui peraturan PLN nomor 0733.K/DIR/2013 [1].

Dengan adanya peraturan PLN ini, motivasi untuk memasang panel surya ‘supaya untung’, dapat terealisasi.

Contoh masalah:

Seorang pelanggan PLN menggunakan listrik sebanyak 300kWh sebulan (atau 10kWh) sehari, gara-gara pasang AC seharian. Menurut tarif PLN terakhir [2], si pelanggan harus membayar 400-ribu rupiah sebulan (Rp 1.352 / kWh, untuk golongan R-1/TR).

Dari contoh penggunaan di atas, bagaimana menghitung kalau pemasangan panel surya itu untung atau rugi? Berapa besar panel surya yang harus dipasang supaya untung? Ngitungnya gimana nih?

Tunggu dulu, perhitungannya memang tidak segampang ‘1 + 1’, tapi nggak rumit juga. Sebelum nyebur lebih dalam, harus diingat, tujuan akhir dari hitungan adalah mengetahui kapan modal kita bisa balik (inggrisnya ROI, Return on Investment).

Dari perhitungan saya [3], di Indonesia, pasang panel surya on-grid bisa modal balik dalam waktu 13 tahun (alias Return on Investment sekitar 7.7%). Jangan lupa, jangka hidup panel surya itu dijamin selama 25 tahun. Jadi setelah modal balik (13 tahun), selebihnya untung…tung…tung.

Terus, off-grid itu apa?

Waduh, ini topik tersendiri dan lumayan rumit. Intinya:

  • On-grid: terhubung dengan 'grid'. 'Grid' di Indonesia adalah PLN.
  • Off-grid: tidak terhubung dengan 'grid'. Jadi nggak ada hubungannya sama PLN.



Jadi, pedalaman Indonesia yang memakai gen-set itu 'Off-grid', karena tidak terhubung oleh PLN.

Referensi:
[1] http://www.containedenergy.com/residential/pln-net-metering-indonesia/
[2] http://www.pln.co.id/blog/tarif-tenaga-listrik/

[3] http://epxhilon.blogspot.com.au/2015/04/menghitung-untung-rugi-sistem-panel.html

Menghitung Untung Rugi Sistem Panel Surya On-Grid

Langkah menghitung untung-rugi pemasangan panel surya on-grid:
  1. Dapatkan ongkos pasang (total, termasuk inverter dan ongkos pasang);
  2. Hitung berapa banyak kWh yang dihasilkan oleh sistem di atas, per tahun;
  3. Hitung berapa Rupiah yang dihasilkan dalam setahun;
  4. Hitung Return on Investment, atau butuh berapa lama supaya modal kita balik.


Contoh hitungan:

1. Mendapatkan total ongkos pasang:

Masalahnya, melihat pangsa pasar di Indonesia sekarang, pemasangan sistem ‘on-grid’ di Indonesia belum marak. Alhasil, harganya tidak bersaing (alias mahal). Berhubung saya belum dapat menemukan data, mari kita berasumsi harga pemasangan di Indonesia sekitar USD2,5/Watt (atau sekitar Rp 25.000/Watt). Asumsi ini untuk menunjukkan contoh perhitungan. Prakteknya, kemungkinan besar lebih murah.

Menggunakan asumsi ini, kita akan membutuhkan modal sebesar 25 juta rupiah untuk sistem panel surya sebesar 1.000 Watt.

2. Berapa banyak kWh yang dihasilkan per tahun:

Ini tergantung banyak hal:
  • Tempat tinggal (Indonesia itu gede);
  • Apakah panel surya terhadang oleh bayang-bayang (dari pohon atau gedung lainnya) ketika matahari bersinar;
  • Iklim setempat.

 Untuk Indonesia, sepertinya produksi rata-rata 4kWh per hari (dari sistem sebesar 1kW) cukup akurat (melihat peta dari referensi [1] dan juga [2]). Dengan asumsi ini, kita mampu mendapatkan listrik sebanyak 1.460kWh dalam setahun.

3. Hitung penghasilan (Rupiah) per tahun:

Menggunakan tarif PLN terakhir (Rp 1.352 per kWh, untuk golongan R-1/TR [3]), dan dari hasil hitungan sebelumnya (1.460kWh per tahun), kita mampu menghasilkan (offset) sebesar 1.9 juta rupiah setahun.

4. Hitung berapa lama modal balik (Return on Investment):

Dari total ongkos 25 juta rupiah, dan penghasilan 1.9 juta rupiah setahun, kita baru balik modal setelah 13,2 tahun [4].

Kesimpulan:
  • Setiap 1.000 Watt panel surya dipasang, kita menghasilkan (atau meng-offset biaya) 1.9 juta rupiah per tahun. Untuk sistem lain, lebih kecil atau besar, tinggal dibagi atau dikali dengan faktor per 1.000 Watt.
  • Pasang panel surya on-grid di Indonesia, dijamin untung! Walau beberapa pembaca akan bilang, balik modalnya lama amat yah (13 tahun)? Mudah-mudahan ini akan membaik. Jika total ongkos pasang hanya Rp15.000 / Watt (Rp 15 juta untuk 1.000 Watt), balik modal (ROI) hanya sekitar 8 tahun.
  • Untung-rugi tidak tergantung berapa banyak pemakaian, dengan syarat kita tidak menghasilkan lebih dari yang digunakan. Kalau menghasilkan lebih, ya nggak dibayar sama PLN [3].


Catatan dan Referensi:
[1] http://solargis.info/doc/free-solar-radiation-maps-GHI
[2] http://www.solarchoice.net.au/blog/wp-content/uploads/Solar-Choice-Clean-Energy-Council-Solar-PV-Consumer-guide.pdf
[3] http://www.containedenergy.com/residential/pln-net-metering-indonesia/

[4] Mayoritas panel surya memang memiliki jaminan 25 tahun. Tapi, inverter biasanya hanya 10 tahun. Yang murah atau jadul, paling cuman tahan 5 tahun. Jadi, hati-hati! Ongkos total bisa naik (karena kita harus menghitung ongkos selama 25 tahun untuk akurasi hitungan di atas).

Wednesday, 15 April 2015

Menuju Rumah Mandiri Energi: Pendahuluan

“Saya memakai beberapa lampu dan kipas angin, butuh berapa panel surya supaya rumah saya tidak perlu PLN lagi?”

“Saya sudah muak PLN byar-byar-pret melulu. Panel surya bisa mengatasi masalah ini nggak?”

“Kalau gubuk aja udah pake panel surya, kenapa kita tidak bisa?”



Sepertinya komentar-komentar seperti ini sudah tidak asing lagi belakangan ini. Nah, tujuan artikel ini adalah untuk menjelaskan secara terinci, apa yang dibutuhkan untuk mandiri dalam hal kelistrikan, alias, tidak perlu PLN (Off-Grid). Sebelum terjun ke ‘Off-Grid’, perlu diketahui ada juga yang namanya ‘On-Grid’. Untuk perbandingan on-grid dengan off-grid, ini merupakan topik tersendiri: klik disini.

Andai saja jawabannya sederhana, “Beli aja UPS (uninterruptible Power Supply), terus colok listrik rumah ke situ. Gampang toh?”. Kalo rumah situ gubuk, ya ini jawaban yang benar. Tapi, kalau rumah situ lebih besar dari gubuk, untuk mengandalkan seluruh rumah berdasarkan tenaga surya, ini lebih rumit.

Sebelum menjelaskan lebih lanjut, saya akan jelaskan ‘melistriki’ rumah, dengan analogi ‘mengairi’ rumah:

Dalam ‘mengairi’ rumah modern, air disalurkan ke seluruh rumah melalui pipa-pipa. Nah, biasanya, tekanan air dari PAM (Perusahaan Air Minum) sangat rendah, sehingga tidak bisa langsung digunakan.

Solusinya, air dari PAM ditampung di bak besar, lalu dipompa ke seluruh rumah. Alternatifnya, air dari PAM ditampung di bak yang berada di ketinggian, lalu disalurkan ke seluruh rumah melalui gravitasi. Ilustrasi sebagai berikut:



Nah, melalui ilustrasi di atas, kita bisa tahu beberapa hal berikut:
  • Berapa banyak air yang dibutuhkan oleh semua penghuni rumah? Dalam sehari? Seminggu?
  • Berapa banyak air yang harus di-supply oleh PAM?
  • Berapa besar bak air yang harus digunakan?


Dari analogi di atas, pertanyaan ‘berapa banyak panel surya dan baterai yang saya perlukan?’ bisa dijawab dengan menggunakan analogi bak air di atas:
  • Berapa banyak listrik yang saya konsumsi? Sehari? Seminggu?
  • Berapa banyak listrik yang butuh di-supply? (Alias, berapa banyak panel surya yang saya butuhkan)
  • Berapa banyak baterai yang saya butuhkan?
Nah, dalam tulisan selanjutnya, akan saya bahas lebih lanjut.